思路分析
对于每一个1操作,之后的2操作只能选择一个,将1操作之后的所有连边,答案就是求最大独立集
最大独立集又是补图的最大团
AC代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define fun function
#define sz(x) (int)(x).size()
#define lowbit(x) (x)&(-x)
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
namespace FastIO {
#define BUF_SIZE 100000
#define OUT_SIZE 100000
bool IOerror=0;
inline char nc() {
static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
if(p1==pend) {
p1=buf;
pend=buf+fread(buf,1,BUF_SIZE,stdin);
if(pend==p1) {
IOerror=1;
return -1;
}
}
return *p1++;
}
inline bool blank(char ch) {
return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
}
template<class T> inline bool read(T &x) {
bool sign=0;
char ch=nc();
x=0;
for(; blank(ch); ch=nc());
if(IOerror)return false;
if(ch=='-')sign=1,ch=nc();
for(; ch>='0'&&ch<='9'; ch=nc())x=x*10+ch-'0';
if(sign)x=-x;
return true;
}
template<class T,class... U>bool read(T& h,U&... t) {
return read(h)&&read(t...);
}
#undef OUT_SIZE
#undef BUF_SIZE
};
using namespace std;
using namespace FastIO;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
typedef long long ll;
typedef pair<int,int> pii;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const int N = 44;
int n,m;
map<string,int>MP;
int cnt,num[N],ans_s[N],now_s[N],e[N][N],ans;
int dfs(int u,int siz) {
for(int v = u+1; v<=n; v++) {
if(num[v]+siz<=ans) return 0;
if(e[u][v]) {
int ok = 1;
for(int i=1; i<=siz; i++) {
if(!e[v][now_s[i]]) {
ok = 0;
break;
}
}
if(ok){
now_s[siz+1] = v;
if(dfs(v,siz+1)) return 1;
}
}
}
if(siz>ans){
ans = siz;
for(int i=1;i<=siz;i++) ans_s[i] = now_s[i];
return 1;
}
return 0;
}
void maxclique(){
ans = -1;
for(int i=n;i>=1;i--){
now_s[1] = i;
dfs(i,1);
num[i] = ans;
}
}
signed main() {
#ifdef xiaofan
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
cin>>n>>m;
vector<int>tmp;
for(int i=1; i<=m; i++) for(int j=1; j<=m; j++) e[i][j] = 1;
for(int i=1; i<=n; i++) {
int op;
string s;
cin>>op;
if(op == 1) tmp.clear();
else {
cin>>s;
if(!MP[s]) MP[s] = ++cnt;
int u = MP[s];
for(auto v:tmp) e[u][v] = e[v][u] = 0;
tmp.pb(u);
}
}
n = m;
maxclique();
cout<<ans<<endl;
return 0;
}