思路分析
$dp[i][j][k]$表示前$i$个字符,修改了$j$次,有$k$个$t[1]$的答案,往$i+1$转移的时候枚举变或不变就行了,记得特判$t[1]==t[2]$的情况
AC代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define pb push_back
#define mp make_pair
#define fun function
#define sz(x) (x).size()
#define lowbit(x) (x)&(-x)
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
namespace FastIO {
#define BUF_SIZE 100000
#define OUT_SIZE 100000
bool IOerror=0;
inline char nc() {
static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
if(p1==pend) {
p1=buf;
pend=buf+fread(buf,1,BUF_SIZE,stdin);
if(pend==p1) {
IOerror=1;
return -1;
}
}
return *p1++;
}
inline bool blank(char ch) {
return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
}
template<class T> inline bool read(T &x) {
bool sign=0;
char ch=nc();
x=0;
for(; blank(ch); ch=nc());
if(IOerror)return false;
if(ch=='-')sign=1,ch=nc();
for(; ch>='0'&&ch<='9'; ch=nc())x=x*10+ch-'0';
if(sign)x=-x;
return true;
}
template<class T,class... U>bool read(T& h,U&... t) {
return read(h)&&read(t...);
}
#undef OUT_SIZE
#undef BUF_SIZE
};
using namespace std;
using namespace FastIO;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int INF = 0x3f3f3f3f;
const int N = 222;
char s[N],t[N];
int dp[N][N][N];
int main() {
#ifdef xiaofan
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
int n,m;
cin>>n>>m;
cin>>s+1;
cin>>t+1;
mem(dp,-1);
dp[0][0][0] = 0;
if(t[1] == t[2]) {
int sum = 0;
for(int i=1; i<=n; i++) {
if(s[i] == t[1]) sum++;
else {
if(m) {
m--;
sum++;
}
}
}
cout<<sum*(sum-1)/2<<endl;
return 0;
}
for(int i=0; i<n; i++) {
for(int j=0; j<=m; j++) {
for(int k=0; k<=i; k++) {
if(dp[i][j][k]!=-1) {
int now = dp[i][j][k];
if(s[i+1] == t[1]) {
dp[i+1][j][k+1] = max(dp[i+1][j][k+1],now);
dp[i+1][j+1][k] = max(dp[i+1][j+1][k],now+k);
} else if(s[i+1] == t[2]) {
dp[i+1][j+1][k+1] = max(dp[i+1][j+1][k+1],now);
dp[i+1][j][k] = max(dp[i+1][j][k],now+k);
} else {
dp[i+1][j+1][k+1] = max(dp[i+1][j+1][k+1],now);
dp[i+1][j+1][k] = max(dp[i+1][j+1][k],now+k);
dp[i+1][j][k] = max(dp[i+1][j][k],now);
}
}
}
}
}
int ans = 0;
for(int j=0;j<=m;j++) for(int k=0;k<=n;k++) ans = max(ans,dp[n][j][k]);
cout<<ans<<endl;
return 0;
}