思路分析
记录下每条边经过的次数,首先考虑贪心,每次操作肯定是选择价值最大的边,但是这样并不能保证结果最优,因为代价是不同的
记录下两种代价删除$x$次得到的价值,枚举操作几次代价为1的边,二分找到需要操作几次代价为2的边
AC代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define ll long long
#define pb push_back
#define mp make_pair
#define fun function
#define sz(x) (x).size()
#define lowbit(x) (x)&(-x)
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
namespace FastIO {
#define BUF_SIZE 100000
#define OUT_SIZE 100000
bool IOerror=0;
inline char nc() {
static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
if(p1==pend) {
p1=buf;
pend=buf+fread(buf,1,BUF_SIZE,stdin);
if(pend==p1) {
IOerror=1;
return -1;
}
}
return *p1++;
}
inline bool blank(char ch) {
return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
}
template<class T> inline bool read(T &x) {
bool sign=0;
char ch=nc();
x=0;
for(; blank(ch); ch=nc());
if(IOerror)return false;
if(ch=='-')sign=1,ch=nc();
for(; ch>='0'&&ch<='9'; ch=nc())x=x*10+ch-'0';
if(sign)x=-x;
return true;
}
template<class T,class... U>bool read(T& h,U&... t) {
return read(h)&&read(t...);
}
#undef OUT_SIZE
#undef BUF_SIZE
};
using namespace std;
using namespace FastIO;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int INF = 0x3f3f3f3f;
const int N = 1e6+10;
#define int long long
ll s,tot;
int n,cnt,siz[N],in[N],num[N],head[N],a[N],cost[N];
struct node {
int next,v,w,id;
} e[N];
void add(int u,int v,int w,int id) {
e[++cnt].id=id;
e[cnt].v=v;
e[cnt].w=w;
e[cnt].next=head[u];
head[u]=cnt;
}
void dfs(int u,int fa) {
siz[u]=0;
if(in[u]==1 && u!=1) siz[u]=1;
for(int i=head[u]; i; i=e[i].next) {
int v=e[i].v;
int w=e[i].w;
int id=e[i].id;
if(v==fa) continue;
dfs(v,u);
siz[u]+=siz[v];
num[id]+=siz[v];
}
}
struct Node {
int w,val,need;
friend bool operator < (Node x,Node y) {
return x.w<y.w;
}
int cal() {
return val*need-(val/2)*need;
}
};
void debug(vector<int> x){
for(auto i : x) cout<<i<<" ";
cout<<endl;
}
signed main() {
#ifdef xiaofan
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
int T;
read(T);
while(T--) {
read(n,s);
for(int i=1; i<=n; i++) head[i]=0,in[i]=0,num[i]=0;
cnt=1;
for(int i=1; i<n; i++) {
int u,v,w,cc;
read(u,v,w,cc);
in[u]++;
in[v]++;
cost[i]=cc;
add(u,v,w,i);
add(v,u,w,i);
a[i]=w;
}
dfs(1,1);
tot=0;
for(int i=1; i<n; i++) tot+=a[i]*num[i];
int ans=INF;
ll sum=tot-s;
auto solve = [&](int id){
priority_queue<Node>q;
vector<int>tmp;
ll res = 0;
for(int i=1;i<n;i++){
if(cost[i]==id){
q.push({(a[i]-a[i]/2)*num[i],a[i],num[i]});
}
}
tmp.pb(res);
while(!q.empty()){
Node now = q.top();
q.pop();
if(now.w==0) break;
res+=now.w;
tmp.pb(res);
now.val/=2;
now.w=now.cal();
q.push(now);
}
return tmp;
};
vector<int>one,two;
one=solve(1);
two=solve(2);
for(int i=0;i<sz(one);i++){
int pos = lower_bound(all(two),sum-one[i]) - two.begin();
if(pos==(int)sz(two)) continue;
if(one[i]+two[pos]>=sum) ans=min(ans,i+pos*2);
}
printf("%lld\n",ans);
}
return 0;
}