思路分析
要使价值最大,每一个都要用上,先确定k-1个人,然后重复使用第k个位置,直到最后一个人,这样肯定是最优的,我们可以发现,在确定的人里面,他们的$b_i$是单调递增的,所以可以按$b_i$从小到大排序,然后进行DP,$dp[i][j]$表示前$i$个人确定了$j$个人的最大价值
因为数据范围很小,所以这道题还可以通过费用流求解:
- 超级源点–>每个人 流量为1,费用为0
- 每个人–>每个位置,流量为1,费用分情况讨论
- 每个位置–>超级汇点,流量为1,费用为0
因为这里需要的是最大费用最大流,所以将费用变为负的,求出来的就是最大费用了
记录路径的话,就看边的流量剩余情况就行了
DP代码
#include <bits/stdc++.h>
#define ls x<<1
#define rs x<<1|1
#define fi first
#define se second
#define ll long long
#define pb push_back
#define mp make_pair
#define fun function
#define sz(x) (x).size()
#define lowbit(x) (x)&(-x)
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
namespace FastIO {
#define BUF_SIZE 100000
#define OUT_SIZE 100000
bool IOerror=0;
inline char nc() {
static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
if(p1==pend) {
p1=buf;
pend=buf+fread(buf,1,BUF_SIZE,stdin);
if(pend==p1) {
IOerror=1;
return -1;
}
}
return *p1++;
}
inline bool blank(char ch) {
return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
}
template<class T> inline bool read(T &x) {
bool sign=0;
char ch=nc();
x=0;
for(; blank(ch); ch=nc());
if(IOerror)return false;
if(ch=='-')sign=1,ch=nc();
for(; ch>='0'&&ch<='9'; ch=nc())x=x*10+ch-'0';
if(sign)x=-x;
return true;
}
template<class T,class... U>bool read(T& h,U&... t) {
return read(h)&&read(t...);
}
#undef OUT_SIZE
#undef BUF_SIZE
};
using namespace std;
using namespace FastIO;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int INF = 0x3f3f3f3f;
const int N = 80;
struct node{
int a,b,id;
}a[N];
int dp[N][N];
int main() {
#ifdef xiaofan
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
int t;
cin>>t;
while(t--){
int n,k;
read(n,k);
mem(dp,-INF);
dp[0][0]=0;
for(int i=1;i<=n;i++) read(a[i].a,a[i].b),a[i].id=i;
sort(a+1,a+1+n,[](node x,node y){
return x.b<y.b;
});
for(int i=1;i<=n;i++){
for(int j=0;j<=k;j++){
dp[i][j]=max(dp[i][j],dp[i-1][j]+a[i].b*(k-1));
if(j) dp[i][j]=max(dp[i][j],dp[i-1][j-1]+a[i].a+a[i].b*(j-1));
}
}
vector<int>ins,del;
printf("%d\n",k+(n-k)*2);
int now=dp[n][k],cnt=k;
for(int i=n;i>=1;i--){
if(dp[i-1][cnt]+a[i].b*(k-1)==dp[i][cnt]){
del.pb(a[i].id);
now=dp[i-1][cnt];
}else{
ins.pb(a[i].id);
cnt--;
now=dp[i-1][cnt];
}
}
reverse(all(ins));
for(int i=0;i<sz(ins)-1;i++) cout<<ins[i]<<" ";
for(auto x:del) cout<<x<<" "<<-x<<" ";
cout<<ins[sz(ins)-1]<<endl;
}
return 0;
}
费用流代码
#include <bits/stdc++.h>
#define ls x<<1
#define rs x<<1|1
#define fi first
#define se second
#define ll long long
#define pb push_back
#define mp make_pair
#define fun function
#define sz(x) (x).size()
#define lowbit(x) (x)&(-x)
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
namespace FastIO {
#define BUF_SIZE 100000
#define OUT_SIZE 100000
bool IOerror=0;
inline char nc() {
static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
if(p1==pend) {
p1=buf;
pend=buf+fread(buf,1,BUF_SIZE,stdin);
if(pend==p1) {
IOerror=1;
return -1;
}
}
return *p1++;
}
inline bool blank(char ch) {
return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
}
template<class T> inline bool read(T &x) {
bool sign=0;
char ch=nc();
x=0;
for(; blank(ch); ch=nc());
if(IOerror)return false;
if(ch=='-')sign=1,ch=nc();
for(; ch>='0'&&ch<='9'; ch=nc())x=x*10+ch-'0';
if(sign)x=-x;
return true;
}
template<class T,class... U>bool read(T& h,U&... t) {
return read(h)&&read(t...);
}
#undef OUT_SIZE
#undef BUF_SIZE
};
using namespace std;
using namespace FastIO;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
const int INF = 0x3f3f3f3f;
const int N = 222;
const int M = N*N;
struct node {
int v,flow,w,next;
} e[M];
int head[N],cnt;
int n,m,s,t,k,maxflow,mincost,path[N],pre[N];
int dis[N],vis[N];
inline void ade(int u,int v,int f,int w) {
e[++cnt].v=v;
e[cnt].flow=f;
e[cnt].w=w;
e[cnt].next=head[u];
head[u]=cnt;
}
inline void add(int u,int v,int f,int w) {
ade(u,v,f,w);
ade(v,u,0,-w);
}
inline bool spfa() {
mem(dis,INF);
mem(vis,0);
mem(pre,-1);
dis[s]=0;
vis[s]=1;
queue<int>q;
q.push(s);
while(!q.empty()) {
int u=q.front();
vis[u]=0;
q.pop();
for(int i=head[u]; i; i=e[i].next) {
int v=e[i].v;
int w=e[i].w;
if(e[i].flow>0 && dis[v]>dis[u]+w) {
dis[v]=dis[u]+w;
pre[v]=u;
path[v]=i;
if(!vis[v]) {
q.push(v);
vis[v]=1;
}
}
}
}
return pre[t]!=-1;
}
inline void EK() {
while(spfa()) {
int mi=INF;
for(int i=t; i!=s; i=pre[i])
mi=min(mi,e[path[i]].flow);
for(int i=t; i!=s; i=pre[i]) {
e[path[i]].flow-=mi;
e[path[i]^1].flow+=mi;
}
maxflow+=mi;
mincost+=dis[t]*mi;
}
}
inline init() {
mem(head,0);
cnt=1;
s=N-1;
t=N-2;
maxflow=0;
mincost=0;
}
int a[N],b[N],ans[N];
int main() {
#ifdef xiaofan
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
#endif
int cas;
read(cas);
while(cas--) {
read(n,k);
init();
for(int i=1; i<=n; i++) read(a[i],b[i]);
for(int i=1; i<=n; i++) {
add(s,i,1,0);
add(i+n,t,1,0);
}
for(int i=1; i<=n; i++) {
for(int j=1; j<=n; j++) {
if(j<=k-1) add(i,j+n,1,-(a[i]+b[i]*(j-1)));
else if(j==n) add(i,j+n,1,-(a[i]+b[i]*(k-1)));
else add(i,j+n,1,-(b[i]*(k-1)));
}
}
EK();
for(int i=1; i<=n; i++) {
for(int j=head[i]; j; j=e[j].next) {
int v=e[j].v;
int flow=e[j].flow;
if(flow==0 && v>n && v<=2*n) ans[v-n]=i;
}
}
printf("%d\n",k+(n-k)*2);
for(int i=1; i<=n; i++) {
printf("%d ",ans[i]);
if(i>k-1 && i!=n) printf("%d ",-ans[i]);
}
puts("");
}
return 0;
}